Wilson prime
A Wilson prime, named after English mathematician John Wilson, is a prime number p such that p2 divides (p − 1)! + 1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p − 1)! + 1.
The only known Wilson primes are 5, 13, and 563 (sequence A007540 in OEIS); if any others exist, they must be greater than 4×1011.[2] It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval [x, y] is about log(log(y)/log(x)).[3]
Several computer searches have been done in the hope of finding new Wilson primes. [4][5][6] The Ibercivis distributed computing project includes a search for Wilson primes.[7] Another search is coordinated at the mersenneforum. [8]
Near-Wilson primes
- A prime p satisfying the congruence (p − 1)! ≡ − 1 + Bp (mod p2) with small |B| can be called a near-Wilson prime. Near-Wilson primes with B = 0 represent Wilson primes. The following table lists all such primes with |B| ≤ 100 from 106 up to 4×1011:
p |
B |
1282279 |
+20 |
1306817 |
−30 |
1308491 |
−55 |
1433813 |
−32 |
1638347 |
−45 |
1640147 |
−88 |
1647931 |
+14 |
1666403 |
+99 |
1750901 |
+34 |
1851953 |
−50 |
2031053 |
−18 |
2278343 |
+21 |
2313083 |
+15 |
2695933 |
−73 |
3640753 |
+69 |
3677071 |
−32 |
3764437 |
−99 |
3958621 |
+75 |
5062469 |
+39 |
5063803 |
+40 |
6331519 |
+91 |
6706067 |
+45 |
7392257 |
+40 |
8315831 |
+3 |
8871167 |
−85 |
9278443 |
−75 |
9615329 |
+27 |
9756727 |
+23 |
10746881 |
−7 |
11465149 |
−62 |
11512541 |
−26 |
11892977 |
−7 |
12632117 |
−27 |
12893203 |
−53 |
14296621 |
+2 |
16711069 |
+95 |
16738091 |
+58 |
17879887 |
+63 |
19344553 |
−93 |
19365641 |
+75 |
20951477 |
+25 |
20972977 |
+58 |
21561013 |
−90 |
23818681 |
+23 |
27783521 |
−51 |
27812887 |
+21 |
29085907 |
+9 |
29327513 |
+13 |
30959321 |
+24 |
33187157 |
+60 |
33968041 |
+12 |
39198017 |
−7 |
45920923 |
−63 |
51802061 |
+4 |
53188379 |
−54 |
56151923 |
−1 |
57526411 |
−66 |
64197799 |
+13 |
72818227 |
−27 |
87467099 |
−2 |
91926437 |
−32 |
92191909 |
+94 |
93445061 |
−30 |
93559087 |
−3 |
94510219 |
−69 |
101710369 |
−70 |
111310567 |
+22 |
117385529 |
−43 |
176779259 |
+56 |
212911781 |
−92 |
216331463 |
−36 |
253512533 |
+25 |
282361201 |
+24 |
327357841 |
−62 |
411237857 |
−84 |
479163953 |
−50 |
757362197 |
−28 |
824846833 |
+60 |
866006431 |
−81 |
1227886151 |
−51 |
1527857939 |
−19 |
1636804231 |
+64 |
1686290297 |
+18 |
1767839071 |
+8 |
1913042311 |
−65 |
1987272877 |
+5 |
2100839597 |
−34 |
2312420701 |
−78 |
2476913683 |
+94 |
3542985241 |
−74 |
4036677373 |
−5 |
4271431471 |
+83 |
4296847931 |
+41 |
5087988391 |
+51 |
5127702389 |
+50 |
7973760941 |
+76 |
9965682053 |
−18 |
10242692519 |
−97 |
11355061259 |
−45 |
11774118061 |
−1 |
12896325149 |
+86 |
13286279999 |
+52 |
20042556601 |
+27 |
21950810731 |
+93 |
23607097193 |
+97 |
24664241321 |
+46 |
28737804211 |
−58 |
35525054743 |
+26 |
41659815553 |
+55 |
42647052491 |
+10 |
44034466379 |
+39 |
60373446719 |
−48 |
64643245189 |
−21 |
66966581777 |
+91 |
67133912011 |
+9 |
80248324571 |
+46 |
80908082573 |
−20 |
100660783343 |
+87 |
112825721339 |
+70 |
231939720421 |
+41 |
258818504023 |
+4 |
260584487287 |
−52 |
265784418461 |
−78 |
298114694431 |
+82 |
See also
Notes
- ^ Lehmer, E. (April 1938). "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson". Annals of Mathematics 39 (2): 350–360. doi:10.2307/1968791. http://gradelle.educanet2.ch/christian.aebi/.ws_gen/14/Emma_Lehmer_1938.pdf. Retrieved 8 March 2011.
- ^ Status of a search for Wilson primes (Data collected from mersenneforum.org.) Retrieved on November 3, 2011.
- ^ The Prime Glossary: Wilson prime
- ^ McIntosh, R. (9 March 2004). "WILSON STATUS (Feb. 1999)". E-Mail to Paul Zimmermann. http://www.loria.fr/~zimmerma/records/Wieferich.status. Retrieved 6 June 2011.
- ^ A search for Wieferich and Wilson primes, p 443
- ^ Ribenboim, P.; Keller, W. (2006) (in German). Die Welt der Primzahlen: Geheimnisse und Rekorde. Berlin Heidelberg New York: Springer. p. 241. ISBN 3-540-34283-4. http://books.google.de/books?id=-nEM9ZVr4CsC&pg=PA248&dq=die+welt+der+primzahlen+rodenkirch&hl=de&ei=LbLsTfG8G8XdsgamnLXnCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDQQ6AEwAA#v=onepage&q&f=false.
- ^ Ibercivis site
- ^ Distributed search for Wilson primes (at mersenneforum.org)
References
External links
|
|
By formula |
|
|
By integer sequence |
|
|
By property |
|
|
Base-dependent |
|
|
Patterns |
Twin ( p, p+2) · Triplet ( p, p+2 or p+4, p+6) · Quadruplet ( p, p+2, p+6, p+8) · Tuple · Cousin ( p, p+4) · Sexy ( p, p+6) · Chen · Sophie Germain ( p, 2 p+1) · Cunningham chain ( p, 2 p±1, …) · Safe ( p, ( p−1)/2) · Arithmetic progression ( p+ a·n, n=0,1,…) · Balanced (consecutive p− n, p, p+ n)
|
|
By size |
|
|
Complex numbers |
|
|
Composite numbers |
|
|
Related topics |
|
|